Organic Synthesis Of Heterocyclic Compounds Notes And Mind Maps For CSIR NET Exam

Organic Synthesis Of Heterocyclic Compounds

Synthesis and Reactivity of Common Heterocyclic Compounds (O, N, S) – CSIR NET Detailed Notes

Heterocyclic compounds are organic molecules containing at least one heteroatom (O, N, S) in a cyclic ring. They are fundamental in drug design, biochemistry, and material science. Below is an in-depth, structured explanation with proper formatting (subscripts, superscripts, reactions intact) for clear understanding.

1. Five-Membered Heterocycles (One Heteroatom)

(A) Furan (C₄H₄O)

  • Aromaticity: 6Ï€-electrons (lone pair on O contributes to conjugation).
  • Reactivity: Highly reactive towards electrophiles.

Synthesis Methods:

  1. Paal-Knorr Synthesis
    • Reactants: 1,4-Diketone + Acid (H₂SO₄, P₂O₅).
    • Mechanism: Acid-catalyzed cyclodehydration.
    • Example:
    • CH₃-CO-CH₂-CH₂-CO-CH₃ + H⁺ (H₂SO₄) → Furan + 2H₂O
  2. From Furfural (Industrial Method)
    • Step 1: Pentose sugar (xylose) → Furfural (acid hydrolysis).
    • Step 2: Furfural → Furan (decarboxylation).
    • C₅H₁₀O₅ (Xylose) → C₅H₄O₂ (Furfural) → C₄H₄O (Furan) + CO₂↑

Reactivity & Reactions:

  • Electrophilic Aromatic Substitution (EAS):
    • More reactive than benzene (due to O’s +M effect).
    • Preferred position: C-2 (α-position).
    • Examples:
      • Nitration:
      • Furan + HNO₃ (Ac₂O) → 2-Nitrofuran
      • Friedel-Crafts Acylation:
      • Furan + CH₃COCl (AlCl₃) → 2-Acetylfuran
  • Diels-Alder Reaction:
    • Acts as a diene (used in cycloaddition reactions).
    • Example:
    • Furan + Maleic Anhydride → Endo-Adduct (Bicyclic)

(B) Pyrrole (C₄H₄NH)

  • Aromaticity: 6Ï€-electrons (lone pair on N participates).
  • Reactivity: Highly nucleophilic at C-2.

Synthesis Methods:

  1. Paal-Knorr Synthesis
    • Reactants: 1,4-Diketone + NH₃ or RNH₂.
    • Example:
    • CH₃-CO-CH₂-CH₂-CO-CH₃ + NH₃ → Pyrrole + 2H₂O
  2. Knorr Pyrrole Synthesis
    • Reactants: α-Aminoketone + β-Ketoester.
    • Example:
    • NH₂-CH₂-CO-CH₃ + CH₃-CO-CH₂-COOEt → Pyrrole-2-carboxylate

Reactivity & Reactions:

  • Electrophilic Substitution:
    • Preferred position: C-2 (due to higher electron density).
    • Examples:
      • Vilsmeier-Haack Formylation:
      • Pyrrole + POCl₃ + DMF → Pyrrole-2-carbaldehyde
      • Nitration:
      • Pyrrole + HNO₃ (Ac₂O) → 2-Nitropyrrole
  • Acidity of NH Proton:
    • Can be deprotonated (pKa ~17) to form nucleophilic pyrrolyl anion.
    • Example:
    • Pyrrole + NaH → Na⁺[Pyrrolyl]⁻ (Nucleophile)

(C) Thiophene (C₄H₄S)

  • Aromaticity: 6Ï€-electrons (S lone pairs contribute weakly).
  • Reactivity: More stable than furan, less than benzene.

Synthesis Methods:

  1. From Sodium Succinate (Classical Method)
    • Reactants: Sodium succinate + P₂S₅.
    • Example:
    • NaOOC-CH₂-CH₂-COONa + P₂S₅ → Thiophene + Na₂S + H₂O
  2. Paal-Knorr Synthesis (Modified)
    • Uses Lawesson’s Reagent (LR) for sulfur insertion.
    • Example:
    • 1,4-Diketone + LR → Thiophene

Reactivity & Reactions:

  • Electrophilic Substitution:
    • Preferred position: C-2.
    • Example (Sulfonation):
    • Thiophene + H₂SO₄ → Thiophene-2-sulfonic acid
  • Resistance to Oxidation:
    • Unlike furan, thiophene does not cleave with oxidants.

2. Five-Membered Heterocycles (Two Heteroatoms)

(A) Imidazole (C₃H₄N₂)

  • Aromaticity: 6Ï€-electrons (both N lone pairs contribute).
  • Amphoteric Nature: Can act as acid (NH) or base (N lone pair).

Synthesis Methods:

  1. Radziszewski Synthesis
    • Reactants: 1,2-Diketone + Aldehyde + NH₃.
    • Example:
    • CH₃-CO-CO-CH₃ + HCHO + NH₃ → Imidazole

Reactivity & Reactions:

  • Electrophilic Substitution:
    • Occurs at C-4/C-5 (electron-rich positions).
  • Nucleophilic Substitution:
    • Halogen at C-2 can be displaced by nucleophiles.

(B) Pyrazole (C₃H₄N₂)

  • Aromaticity: 6Ï€-electrons.
  • Tautomerism: Exists as NH/CH tautomers.

Synthesis Methods:

  1. Condensation of Hydrazine with 1,3-Diketones
    • Example:
    • CH₃-CO-CH₂-CO-CH₃ + N₂H₄ → Pyrazole

Reactivity & Reactions:

  • Electrophilic Substitution:
    • Occurs at C-4 (less hindered position).

3. Six-Membered Heterocycles (One Heteroatom: Pyridine)

Pyridine (C₅H₅N)

  • Aromaticity: 6Ï€-electrons (N lone pair not in conjugation).
  • Reactivity: Electrophilic substitution difficult (electron-deficient).

Synthesis Methods:

  1. Hantzsch Synthesis
    • Reactants: Aldehyde + β-Ketoester + NH₃.
    • Example:
    • 2CH₃CHO + CH₃COCH₂COOEt + NH₃ → Dihydropyridine → Pyridine (Oxidation)

Reactivity & Reactions:

  • Electrophilic Substitution:
    • Occurs at C-3 (meta-position) due to deactivation by N.
  • Nucleophilic Substitution:
    • Chichibabin Reaction:
    • Pyridine + NaNH₂ → 2-Aminopyridine

4. Six-Membered Heterocycles (Two Heteroatoms: Pyrimidine)

Pyrimidine (C₄H₄N₂)

  • Electron-Deficient: Difficult EAS, favors nucleophilic attack.

Synthesis Methods:

  1. Biginelli Reaction
    • Reactants: Urea + β-Ketoester + Aldehyde.
    • Example:
    • NH₂-CO-NH₂ + CH₃COCH₂COOEt + PhCHO → Dihydropyrimidine → Pyrimidine (Oxidation)

Reactivity & Reactions:

  • Nucleophilic Substitution:
    • Example:
    • 2-Chloropyrimidine + NH₃ → 2-Aminopyrimidine

Key Takeaways for CSIR NET

Heterocycle

Key Feature

Electrophilic Substitution Position

Important Reaction

Furan

Highly reactive (O +M effect)

C-2 (α)

Diels-Alder, Nitration

Pyrrole

NH acidic, nucleophilic C-2

C-2 (α)

Vilsmeier formylation

Thiophene

Stable, S-resonance

C-2 (α)

Sulfonation

Pyridine

Electron-deficient (N -I effect)

C-3 (meta)

Chichibabin amination

Imidazole

Amphoteric (acid & base)

C-4/C-5

Halogen displacement

Pyrimidine

Very electron-deficient

C-5 (if any)

Nucleophilic substitution (C-2)

End of Notes

You May Also Like

Loading...


Reviews



Sudhir Nama Chemistry Lecture - Video 1
Sudhir Nama Chemistry Lecture - Video 2
Sudhir Nama Chemistry Lecture - Video 3
Sudhir Nama Chemistry Lecture - Video 4

Contact Me

Shoot Your Questions